Fuzzy star-operations on an integral domain
نویسندگان
چکیده
In this paper, we introduce the concept of fuzzy star-operations on an integral domain and show that the set of all fuzzy star-operations on the integral domain forms a complete lattice. We also characterize Pr3 ufer domains, psuedo-Dedekind domains, (generalized-) greatest common divisor domains, and other integral domains in terms of the invertibility of certain fractionary fuzzy ideals. c © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Semistar dimension of polynomial rings and Prufer-like domains
Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...
متن کاملGeneralized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making
The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...
متن کاملON v–DOMAINS AND STAR OPERATIONS
Let ∗ be a star operation on an integral domain D. Let f(D) be the set of all nonzero finitely generated fractional ideals of D. Call D a ∗–Prüfer (respectively, (∗, v)–Prüfer) domain if (FF−1)∗ = D (respectively, (F vF−1)∗ = D) for all F ∈ f(D). We establish that ∗–Prüfer domains (and (∗, v)–Prüfer domains) for various star operations ∗ span a major portion of the known generalizations of Prüf...
متن کاملFuzzy number-valued fuzzy relation
It is well known fact that binary relations are generalized mathematical functions. Contrary to functions from domain to range, binary relations may assign to each element of domain two or more elements of range. Some basic operations on functions such as the inverse and composition are applicable to binary relations as well. Depending on the domain or range or both are fuzzy value fuzzy set, i...
متن کاملUppers to Zero and Semistar Operations in Polynomial Rings
Given a stable semistar operation of finite type ⋆ on an integral domain D, we show that it is possible to define in a canonical way a stable semistar operation of finite type [⋆] on the polynomial ring D[X], such that D is a ⋆-quasi-Prüfer domain if and only if each upper to zero in D[X] is a quasi-[⋆]-maximal ideal. This result completes the investigation initiated by Houston-Malik-Mott [18, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fuzzy Sets and Systems
دوره 136 شماره
صفحات -
تاریخ انتشار 2003